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Metal-insulator transition in an one-dimensional two-band 
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Received 22 July 1994, in final form 13 September 1994 

Abstract. We consider a one-dimensional two-band model of elecuons on a lattice with equal 
nearest-neighbour hopping, an interband splitting A and a Hubbard-like repulsion U. The 
model is defined via the SU(4) generalization of Lieb and Wu's Bethe nnsntz solution of the 
one-dimensional Hubbard model. At T = 0 the model has a Mott metal-insulator transition 
at a critical value &(A) for a band filling of exactly one electron per site. Uc decreases 
with A, being zem if the excited-electron band is empty, and Uc = 2.981 when the bands are 
degenerate. We discuss the ground-state properties, the Spectrum of elemental excitations, the 
specific heat and the magnetic susceptibility, in both the metallic and insulating phases, as a 
function of the crystal-field splitting for exactly one electron per site. There are four bmches 
of elemental excitations: (i) charge excitations, (ii) crystalline-held excitations and (iii) two 
branches of spin waves. The Fermi velocity is finite in the metallic phase, diverges as the 
metal-insulator transition is approached from the metallic side and vanishes for the insulator. 
Each band contributes to the susceptibility with a term tliat is inversely proportional to the spin- 
wave velocity for that band. The law-temperature specific heat is proportional to T and m the 
sum of the inverses of the velacities of the four branches. 

~~ 

1. Introduction 

The strongly anisotropic magnetic and transport properties of high-temperature supercon- 
ductors arise primarily from the CuO planes. In particular, the high correlations among 
the electrons in the incomplete 3d shell of Cu are a key aspect for the understanding of 
these compounds. It has been conjectured [I] that the ID and ZD variants of the Hubbard 
model have properties in common. There is some experimental evidence [Z-61 that both the 
3d& and 3d,2 orbitals may play a role in higb-Tc cuprates. Motivated by this possibility, 
we consider an one-dimensional integrable model involving two equal nearest-neighbour 
tight-binding bands separated by a crystalline-field splitting, which could represent the two 
relevant orbitals. The electrons interact via a Hubbard-like repulsion, which provides the 
necessary intra- and interband correlations. Several multiband models have been previously 
proposed [7], including some integrable one-dimensional ones [S, 91. Moreover, exact 
results in one dimension are often more 'accessible than two-dimensional ones and may 
provide a testing ground for approaches intended for more complex systems. 

Our starting point is the generalization of Lieb and Wu's Betbe unsufz equations [IO] 
for the one-dimensional spin-4 (N = 2) Hubbard model to N components with SU(N)  
symmetry [II-121. For OUT two-band model there are four internal degrees of freedom, 
N = 4, composed of the direct product of the spin and the band indices. Several properties 
were derived for the ground state of the SU(N)-symmetric model. (i) The energy [13], 
the chemical potential 1131, and the zero-field magnetic susceptibility, xs, [12, 131 were 
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obtained as a function of band filling n,  U and N. (ii) A small magnetic field gives rise 
to logarithmic singularities in the susceptibility as H + 0 for all n ,  U > 0 and N [12, 
131. (iii) In the absence of external fields and as N -+ CO the Bethe ansatz equation for the 
charges reduces to that of an interacting Bose gas. Conhibutions of order of 1/N vanish 
identically, so that the first corrections to leading order are of the order l/NZ [12-151. (iv) 
There is a qualitative change in the spectral density of the charge rapidities at a critical 
value of the coupling, Uc, which is associated with a metal-insulator transition of the Mott 
type [14]. Here Uc is a function of N, being zero for N = 2 [IO] and it approaches 
3.466 for N + 00. (v) The spectrum of elemental excitations, consisting of one branch of 
charge excitations and (N - 1) spin excitation branches arising from the internal degrees 
of freedom, shows the charge-colour separation characteristic of one-dimensional systems 
[13, 161. (vi) The Fermi momentum of the charges, p~ = xn, is exclusively determined by 
the band filling and the momentum range of the spin waves is related to the Fermi surface 
of the charges [13]. (vii) The Fermi velocity, UF, is finite for U c U, (metallic phase). 
diverges as U + U, from below, and vanishes for U > U, (insulating phase) [14]. (viii) In 
the absence of external fields the spin-wave velocity, us, is the same for all the (N - 1) spin 
wave branches. VS increases with the band filling n and decreases with U. For U CO the 
spin waves are soft, i.e. an infinitesimal field aligns all spins [13]. This is the consequence 
of an extended Pauli principle, since for U = 00 no two electrons can occupy the same site. 
(ix) xs and vs are inversely proportional; their product is independent of U and n [13]. 
(x) For n = 1 and large U the model maps onto the SU(N)-invariant Heisenberg chain 
[12, 171. (xi) The low-T specific heat is proportional to T with proportionality constant 
y = (n/3)[ l /u~ + ( N  - l)/us]. (xii) In the continuum limit the charges interact with 
each other with an effective potential proportional to [ sinh(u~)]-~, where x is the distance 
between the particles involved and a is an inverse length scale [14, le]. (xiii) The Bethe 
eigenfunctions do not form a complete set of states [ I l ,  141 and do not span the entire Fock 
space of the degenerate Hubbard model. Hence, an analytic form for the Hamiltonian of 
this model is not known. (xiv) The critical exponents determining the asymptotic behaviour 
of correlation functions at long distances and T = 0 were derived using conformal field 
theory in [19]. 

In this paper we consider a Hubbard-like model with two bands of equal hopping matrix 
element split by a crystal field, A. Our model is defined via the generalization of Lieb and 
Wu's Bethe ansarz solution [lo] of the traditional Hubbard model to N internal degrees of 
freedom [ l l ,  121. Since the band splitting leaves the Bethe eigenfunctions unchanged, our 
system is then basically the generalization to N = 4. Unfortunately, as discussed above 
under point (xiii), an analytic expression of the Hamiltonian is not known. In section 2 we 
restate the SU(4) generalization [11, 121 of Lieb and Wu's Bethe ansarz equations of the 
Hubbard model [lo], which define the model in terms of the Bethe eigenfunctions and their 
energies. We limit ourselves to the most important equations, which are the basis of our 
analysis. In section 3 we discuss the ground-state properties for one electron per site as a 
function of the population of the excited band. In particular, we focus on the phase diagram 
for the metal-insulator transition, which is characterized by the vanishing of the charge 
density of states at the Fermi level. The ground-state energy and the chemical potential 
are also obtained. The spectrum of elemental excitations is derived in section 4. There are 
four branches of elemental excitations: (i) charge excitations, (ii) interband or crystal-field 
transitions and (iii) two branches of spin waves. The Fermi velocity of the charges is finite in 
the metallic phase, diverges as the metal-insulator transition is approached from the metallic 
side and vanishes for the insulator. In section 5 we discuss the magnetic susceptibility and 
the low-temperature specific heat. Each band contributes to the susceptibility with a term 
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that is inversely proportional to the spin-wave velocity for that band. The specific heat is 
proportional to T and to the sum o f  the inverses of the velocities of the four branches of 
elemental excitations. Concluding remarks follow in section 6. 

2. The Bethe ansatz equations 

As pointed out in the introduction the model  is defined through the SU(4) generalization 
of Lieb and Wu’s Bethe ansatz equations. The Bethe eigenfunctions do not represent a 
complete set of states for the degenerate Hubbard model [11, 141. The Hamiltonian form 
for our model is therefore not known and the model is simply defined as the collection of 
Bethe eigenstates and their energies. Below, after stating the SU(4) Bethe equations, we 
discuss which limits of the degenerate Hubbard model are recovered exactly. 

Within the framework of Bethe’s ansutz an integrable one-dimensional system of 
particles with four intemal degrees of freedom (direct product of spin and number of bands) 
is parametrized in terms of one set of charge rapidities [k,], two sets of spin-rapidities 
describing the possible magnetization of each of the bands, [@I, 1 = 1,3, and one set of 
rapidities, [ A a ] ,  representing the crystalline-field splitting between the bands. Here j and a 
are running indices within these sets, j = 1, ..., Ne, Ne being the total number of electrons. 
and 01 = 1, ..., M“) for 2 = 1,2 ,3 .  Each internal degree of freedom gives rise to one set 
of rapidities. All rapidities within a given set have to be different for the wavefunctions 
to be linearly independent. This property leads to Fermi statistics for all the rapidities. 
The rapidities are not independent of each other but coupled by the discrete Bethe ansatz 
equations 1111 

MI’) sin kj - CAi) + iU/4 
sin kj - d” - iU/4 

exp(iN k.) - n , ’ - j = 1, ___ ,Ne 

a = 1, .__, M(’) 

(2.10) 

(2.16) 

CY = 1, ..., M(’) (2.lc) 

where Nn is the number of sites in the chain. This solution corresponds to the Young tableau 
(Ne - M(’), M(’)- M”),  M(’) - M”), M O ) ) ,  where necessarily Na 2  ne^> M ( I )  2, M(*) 2 
M(3)  > 0. The energy, the number of electrons populating the ground and excited bands 
(n,N, and n&), and the magnetization are given by 

Ne 
E = - 2 cos(kj) (2.2a) 

j=1 
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n,N, = Ne - M" n,N, = M(') (2.2b) 

(Z.Zc) 

The SU(4) generalization of the Lieb and Wu Bethe ansm equations [ l l]  contains the 
following limits. (i) For Ma) = = 0 the solution of the standard spin-f Hubbard 
model is recovered; this corresponds to the excited-electron band being totally depopulated. 
(ii) In the limit U + 0, kjNv is an integer multiple of n and (2.1) reduce to the solution 
for free fermions with tight-binding dispersion. (iii) In the limit U + CO, again kjN, is 
an integer multiple of n. Since the multiple occupation of a site is forbidden, the charges 
have a tight-binding dispersion and the internal degrees of freedom are all degenerate (no 
dispersion). (iv) In the continuum limit, i.e. sin@) % k ,  equations (2.1) reduce to those 
of a four-component Fermi gas interacting via a &function potential [ZO]. Hence, although 
the Hamiltonian form of the model is not known, it contains the relevant limiting cases 
and the interaction is in general of short-range character [14]. This makes equations (2.1) 
a physically meaningful model worth studying. 

In the ground state all rapidities are real. We take logarithms of equations (2.1) and 
differentiate with respect to the variable kj in (Z.lu), 6:') in (2.ib), A, in (2.1~). and <i3) in 
(2.M). In the thermodynamic limit the rapidities are closely spaced and can be regarded as 
a continuous variable. Due to the tight-binding band, the k values are limited to the interval 
[-n, XI ,  while the other rapidities are not constrained. We introduce distribution density 
functions for the four sets of rapidities: p ( k )  for the charges, u2(A) for the crystalline-field 
rapidities and U, ( 6 )  and u3(f) for the spin rapidities. Similarly, we define the complementary 
'hole' density functions for the states that are not occupied, ph(k).  ua(A), blh(6) and U&). 

In the ground state the density distributions are symmetric functions of their arguments with 
p ( k )  vanishing for Ikl > Q, u2(A) = 0 for IAl > B ,  and s(<) = 0 if 161 BI for 1 = 1.3. 
The density functions satisfy the following set of linear integral equations [ll-l3]: 

>. s, = ( I ~ ) ( N ~  + Z M ( ~ )  - 2 ~ " )  - z ~ ( 3 )  

1 
2S 

+ p ( k )  = - + cosk dk' Gl(sink - sink') p(k') 

B 
+ c o s k l B d A  Gl(A - sink) uz(A) 

( 2 . 3 ~ )  

(2.3b) 

(2 .3~)  
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where 

with Re denoting real part and @ being the digamma function. 
The energy can be expressed as 

Q 
E / N a  = - 2 1 Q d k  cos(k) p(k) ( 2 . 5 ~ )  

and the integration limits Q and E are determined by the number of electrons in each band, 
ns > ne, 

Q B 

n = ng + n e  = 1, dk p ( k )  ne = l B d A  U2(A). (2.5b) 

which are the energies entering the Fermi functions populating the bands. The potentials 
satisfy the following integral equations: 

~ ( k )  = -2cos(k) - p +  dk' cosk' Gl(sink - sink') ~ ( k ' )  c 
+ 1; dA GI (A - sink) f,dZ'(A) 
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@)(A) = A + H + GI(A - A') - G3(A - A')]v"(A') 

(2 .7~)  

(2.74 

where p. is the chemical potential and A is the band splitting. The potentials are symmetric 
and increasing functions of Ikl, IAI and It[, respectively. The zeros of the potentials, 
E ( + Q )  = 0, rp(2)(.tB) = 0 and rp")(fB~) = 0, define the relation of Q, B and Bl with @, 

A and H .  The above equations are valid for n < 1, all U ,  A and H. 
In the absence of a magnetic field the spin rapidities fill the entire real axis, 

BI = B3 = 03, and can be eliminated from the problem. In this limit the potentials 
v(')(t), 1 = 1.3, are negative for all < and the spin-rapidity bands are completely filled. 

3. Ground-stafe properties 

We now restrict ourselves to a band filling of exactly one electron per site, n = NJN,  = 1 
and zero magnetic field. Only for n = 1 may the system undergo a metal-insulator transition. 
The integral equations for the densities and the potentials reduce then to a system of two 
coupled equations, which can be solved numerically by discretizing the integrals using about 
100 points. 

Depending on the interaction strength U and the band splitting A, not all Q values 
between zero and x are necessarily meaningful 113, 141. This is best seen from the U = 0 
limit presented in the appendix. For U = 0 the chain is metallic with n/4 < Q < x/2 
depending on the relative populations of the electron bands. In the k range where both 
bands are occupied p ( k )  = 2 / z ,  while p ( k )  = 1/n if only the lower-lying electron band is 
populated. For U --f 00, on the other hand, we have an insulator with p ( k )  = 1/(2n) and 
Q = x. In this case each k value can only be occupied once. p ( k )  and ph(k) are symmetric 
and non-negative (since they represent a density of states) functions of their argument k .  
If we increase U ,  starting from U = 0 and assuming B # 0, the repulsion is unfavourable 
to a multiple occupation of sites, leading to a gradual increase of Q. The system remains 
metallic until Q = n is reached. This occurs at a critical value U, of the coupling, which 
corresponds to the Mott transition 1141. Hence, for U c U, the system is metallic, while 
for U > U, it is insulating. A similar behaviour is obtained if B is decreased with U kept 
constant. Figure 1 shows p ( k )  as a function of k for U = 2.5, Ne = Nu and several values 
of ne (or B). In general p ( k )  has a maximum at k = 0, since for small k both electron bands 
have the highest probability of occupation. Curves (a) and (b) correspond to the insulating 
phase with Q = n, curves (d) and (e) represent two metallic situations, while (c) is the 
point of the metal-insulator transition. At the Mott transition p ( Q  = n) vanishes indicating 
that the charges cease to have a Fermi surface. p(Q = n) is non-zero elsewhere. This zero 
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0.4 

0.3 

h 
Y 
v 0.2 
0 

0.1 

-2 0 2 n 
0.0 

-n 

k 
Figure 1. Density distribution of charge rapidities p(k)  for one electron per site (n = I),  
U = 2.5 and five values of ne: (a) 0.0, (b) 0.1088. (c) 0.2017, (d) 0.3326 and (e) 0.50. For 
cases (a), (b) and (c) Q = R, while in cases (d) and (e) Q = 2.512 and 2.440, respectively. 
Cases (a) and (b) represent insulating situations. while for (d) and (e) the system is a metal. 
Case (c) corresponds to the Mott metal-insulator transition. Note that p ( Q )  is finite in all cases 
excepr (c). The vanishing of the density of states at the Fermi point characterizes the Mott 
transition. p(k)  is finite everywhere for Ikl C Q if n c I. Note that p ( k )  has a maximum for 
k = 0; this indicates that a multiple occupancy o f a  small-lkl smte is more likely than for larger 
Ikl (single occupancy corresponds to p = 1/(271)). Also, the larger ns the larger the small-lkl 
occupation probability. 

of p ( Q )  has consequences on the Fermi velocity of the elemental charge excitations 1141 
(see section 4). p ( Q )  is of course finite for all U and A if n < 1. 

For Ne = N ,  the integration limits B and Q are not independent. Figure 2(A) shows 
their interrelation for several values of U .  For U 2.981 we have Q = a for all B and 
the system is always an insulator. For U = 0 only B values smaller than are allowed. 
For U < 2.981 the slope, dQ/dB, diverges as the Mom transition is approached from the 
metallic side, Q + a. The population of the excited-electron band as a function of B for 
various U is displayed in figure 2(B). The limit B = 0 corresponds to an empty excited band 
(ne = 0). that is, to the standard spin-: Hubbard.mode1,~ which is an insulator for all U > 0. 
The occupation of the lower-lying electron band is ng = 1 - ne; The density of charge 
states fork = &Q is displayed in figure 3(A) as a function of ne for several U .  For U = CO 

we have p(Q = a )  = 1/(2a). The quantity p(a) decreases monotonically with decreasing 
U and/or increasing ne. For U > 2.981 the quantity p(a) is always positive and the chain 
is insulating. The behaviour changes when U is decreased further, where p(a)  = 0 for a 
specific value of n: (which depends on U). As discussed above this corresponds to the Mott 
metal-insulator transition. For U = 2.5 the transition occurs at nE = 0.2017, for U = 2 
at n: = 0.0884 and for U = 1 at n: = 0.00264. If ne is smaller than this specific value 
n: the system is insulating, while if ne z n: it is metallic. In figure 3@) we show the 
metal-insulator boundary as a function of the population of the excited-electron band. For 
U > U, the chain is insulating, otherwise it is metallic. As n, + 0.5 the bands become 
degenerate, np = ne, and Uc = 2.981. For n, = 0 one band is completely empty and the 
other one half filled; this corresponds to the standard Hubbard model with U, = 0. For 
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small ne we obtain that along the phase boundary n, = B/rr % U,"2exp(-2a/Uc), i.e., the 
dependence is non-analytic as U + 0. 

1.0 

0.4 

0.2 

0.0 
0 0.25 0.5 0.75 1 1.25 1.5 

B 

0.5 

0.4 

0.3 

P 
0.2 

0.1 

0.0 
0 0.5 1 1.5 2 2.5 3 

B 
Figure 2. (A) Relation between the integration limits Q and B for n = 1 (one electron per 
site) and several values of U. For U = 0 the range of B is restricted to values smaller than 
2-'iz, while x/4 i Q i x/2 .  Q = n for all B for U =- 2.981. If Q = x the system is an 
insulator, while for Q < x the chain is metallic. The metal-insulator transition occurs at the 
points where Q --t R (with infinite slope). (B) Occupation of the excited band, n., as a function 
of B for n = 1 and several U values. If B = 0 the excited band is empty, and with increasing 
B the value of n, = 0.5 is asymptotically reached. Note lhe,qualitatively different behaviour 
for U = 0. 

The ground-state energy, the chemical potential and the band splitting, A, are displayed 
in figure 4 as a function of ne for various U values and Ne = N,. Both the energy and f i  
increase with increasing U and decrease with increasing ne. A, on the other hand, decreases 
monotonically as both U and ne increase. For U = 0 and n, = 0 the chemical potential 
vanishes and the band splitting is equal two (one electron band is half filled, the other one 
is empty). For U + 00 the ground-state energy is zero, and f i  is equal to two. In this limit 
two electrons are not allowed to occupy the same site and an infinitesimal A completely 
depopulates the excited-electron band. For ne = ns = 0.5, on the other hand, both bands 
are degenerate and necessarily A = 0. Along the phase boundary we have, for small U ,  
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L U- / 
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0 0.1 0.2 0.3 0.4 0.5 
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Figure 3. (A) Density of charges at the 'Fermi surface', p(Q),  for n = I and several U volues 
as a function of nE.  For U --t m the density equals 1/(&) everywhere, while for U = 0 
we have p ( Q )  = I /n  if ne # 0.5 and p ( Q ) ' =  2/? if ne = 0.5. p ( Q )  =- 0 for all n, if 
U > 2.981: in this case the system is always an insulator. For U c 2.981. p ( Q )  has a zero 
at a given value of ne, denoted by n:. This point corresponds to the metal-insulator transition. 
For ne > n: the chain is metallic, while for ne e nE it is insulating. (B) Phase diagram for 
the.Mott transition: Uc = 0 if nc = 0 (standard spin.; Hubbard model), and U, = 2.981 for 
n, = 0.5 (degenerate bands. SU(4)-symmetric Hubbard model). As U -, 0 the dependence is 
non-analytic. n, ~ 1 :  ~ Y e x p ( - ~ n / ~ ~ ) .  

that A = 2 - Uc/2. The metal-insulator transition is only seen as a change in slope of the 
chemical potential, e.g. for U = 2 at n, = 0.088 39. 

4. Elemental excitations 

In this section we study the spectrum of elemental excitations obtained by adding or 
removing one rapidity from one of the four sets of rapidities [13, 21, 221. The spectrum 
of elemental excitations consists of (i) one branch of charge excitations, (ii) one branch 
of crystalline-field excitations and (iii) two branches of spin waves. Since the equations 
determining the densities of rapidities, (2.3), and the energy potentials for the rapidities, 
(2.6), are linear integral equations, the superposition principle holds for any finite number 
of excitations, i.e., the excitations have a soliton-like behaviour. The excitation energies and 
their momenta are additive. In view of the spin and charge separation in one dimension, 
actual excitations, e.g. electron-hole excitations or interband transitions. are built up as 
combinations of elemental excitations and give rise to a continuum of excitations for a given 
momentum [13,21,22]. In addition, the Hubbard model has more complex excitations given 
by strings of complex rapidities [23], which do not contribute to the very-Iow-temperature 
behaviour and are not discussed here. 

(i) Charge excitations h are obtained by removing a charge rapidity ko from the system. 
For one electron per site there are only hole excitations, since the k band is filled and no 
further charge can be added. Removing the charge rapidity gives rise to a rearrangement 
of the remaining rapidities and hence to a change in the energy BE&& which is given 
by the corresponding energy potential, 
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0.0 0.1 0.2 0.3 . 0.4 
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Figure 4. (A) Ground-state energy, EJN,,  (6)  chemical potential. !A, and (C) crystzliine-field 
band splitting, A, as a function of n, for n = 1 and several values of U. For U -+ 00 all sites 
are singly occupied and we have E I N ,  = 0. p = 2 and A = 0. Note that the metal-insulator 
transition is seen as a change of slope of p ni a:, e.g. at n, = 0.08839 for U = 2 and at 
nc = 0.002645 for U = I. 

Although the charge rapidities are frequently called momenta, they do not represent the 
physical momenta of the particles and holes. The physical momentum of the excitation is 
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related to the density function via 

(4.lb) 

With this definition a charge removed from the centre of the Brillouin zone (h = 0) has 
zero momentum and a rapidity removed from the wne boundary, ko = +Q, has momentum 
Psh = fn (one electron per site). 

It is instructive to discuss the U + 0 and U + 00 limits. For U + 0 we obtain (see 
the appendix) for Ne = N ,  

8 cos(k0) + 4p - ZA 
4 COS(ko) + 2p 

if I sin(ko)l < B 
if B < [ sin(ko)l < sin(Q) 

(4.2~) AEch(k0) = 

(4.2b) 

In the limit U + CO, on the other hand, 

which corresponds to free spinless fermions on a tight-binding lattice. 
The dispersion of the charge-hole excitations is seen in figure 5(A) for U = 2.5 and the 

same values of ne as in figure 1. The excitation energy is maximum at the centre of the 
Brillouin zone and vanishes at the zone boundary. All curves are similar, although there are 
some qualitative differences. In the insulating phase (cases (a) and (b)) AE,(p = 0) = 4, 
while this value is less than four in the metallic phase (cases (d) and (e)). Note also that the 
slope of hE,h(p) (Fermi velocity) is finite at p = f r r  for the metal, while it vanishes for 
the insulator. Case (c) corresponds to the point of the Mott transition. The Fermi velocity 
of the charge can explicitly be obtained via 

~ 

~ 

Here the derivative of E is obtained as 

I Q =  2sin(Q) + cos(Q) dk' cos(k') ~ ( k ' )  G,(sin(Q) - sink') s_: 

where 

(4.5~)  

(4.5b) 

with $' being the trigamma function. The derivative vanishes in the insulating phase where 
Q = n and so does the Fermi velocity. In the metallic phase, where Q < n, the derivative, 
and hence up, are finite. p(Q) tends to zero as the metal-insulator transition is approached 
from the metallic side giving rise to a divergent Fermi velocity. UF as a function of A, for 
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Figure 5. Spectrum of elemental excitations for one electron per site (n = I), U = 2.5 and 
five values of ne: (a) 0.0, (b) 0.1088. (c) 0.2017. (d) 0.3326 and (e) 0.50, The cases (a) 
and (b) represent insulating situations, while for (d) and (e) the system is a mctal. Case (c) 
corresponds to the Mott metal-insulator transition. (A) Charge-'hole' excitations obtained by 
removing 3 charge rapidity from the system. Note that AE,h(p = 0) = 4 for the insulator. 
while AE,h(p = 0) c 4 in the metallic situation. The Fermi velocity (slope at p =a) is finite 
for the metal and zero for the insulator. The Fermi momentum is xn.  (B) Crystalline-field 
excitation obtained by addkg or removing a A rapidity. The excitation energy vanishes at the 
Fermi surface for the c~ystalline-field excitations of Fermi momentum p E ~  = xnc. Excitations 
with momentum kger than p f i  are 'holes'. while those with momwltwn smaller than xn.  
correspond to 'prutieles'. Except for the empty band (ne = 0) the crystal-held velocity is non-, 
m. (C) Spin-wave excitations within the lower-lying electron band. The maximum momentum 
is a("+",). In zero magnetic held there only 'hole' excitations, since the spin-rapidity band 
is full. The slope for small p defines the spin-wave velocity U:,?. (D) Spinwave excitations 
within the excitedelemonband. The maximum momentum is ~ n .  and there are only 'hole' 
excitations. since.the spin-rapidity band is full. For nc I 0 the spechum shrinks 10 one point 
(empty band). The slope for small p defines the spin-wave velocity U$$. 

several values of U is shown in figure 6(A). The system is always metallic if U = 0, is 
insulating for small ne if 0 < U < 2.981 and is always insulating if U > 2.981. 
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Figure 5. (Continued) 

(ii) The crystalline-field excitations are obtained by adding (particle excitation, IAol =- 
B )  or removing (hole excitation, Ill01 < B )  the rapidity Ao. This slightly rearranges the k 
rapidities and gives rise to a change in energy 

AEdAo)  = l~@)(Ao) l  . (4.6a) 

The Fermi surface for the crystalline-field excitations is defined by f,o~(fB) = 0. The 
momentum of the excitation is from its definition (assuming one electron per site) 

r[l + i(A0 - sin(k))/U] 1 
r[0.5 + i(Ao - sin(k))/U] J + 2 1; dk p ( k )  Im In (4.6b) 
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Again, the momentum is zero for a hole at the centre of the Brillouin zone, is pCm = me 
at the Fermi level and is p d  = a/2 for A0 CO. The limit U -+ 0 is easily obtained 
using the results from the appendix 

-2A+2/~+4- if IAol < B 
(4.7a) 

Zsin-l(A0) if [A01 < B 
p&o) = sin-](B) + sin-'(Ao) if B c lAol < sin(Q) (4.7b) i., ~~ if sin(Q) < lA0l . 
In the limit U -+ CO the crystal field excitations are soft, i.e. the excitation energy is 
identically zero, since an arbitrarily small A already empties the excited electron band. 

The spectrum of the crystalline-field excitations is seen in figure 5(B) for U = 2.5 and 
the same values of n, as before. The excitation energy vanishes at the Fermi level with 
Fermi momentum ?me. Case (a) corresponds to the empty rapidity band (standard spin-; 
Hubbard model), case (c) refers to the metal-insulator transition and in case (e) the two 
electron bands are degenerate. The slope of the excitation energy at the Fermi level is 
finite everywhere except for ne = 0. This crystalline-field velocity is shown in figure 6(B) 
as a function of ne for several U .  The different behaviour for U = 0 at small ne is the 
consequence of the Matt transition, which for small but finite U takes place for small ne. 
The velocity of the crystalline-field excitations is explicitly obtained via 

where the derivative of 'p(" is computed as 

(4.8b) 

(iii) The spin-wave excitations are obtained by removing one spin rapidity from one 
of the spin-rapidity sets. In the absence of a magnetic field the spin-rapidity bands are 
completely filled, so that there are only 'hole' excitations (the spin-rapidity potentials 
are negative everywhere). Removing the spin rapidity ti) slightly rearranges the charge 
rapidities and gives rise to a change in energy, 

A E ! ! E ~ )  = ivp")($)i (4.94 

where 1 = 1,3 refers to the two classes of spin-wave excitations. The energy potentials are 
obtained via (2.7) with BI = B3 = CO. The corresponding momenta are (1 = 1,3) 

B 

-E 
P:$(~o) = 2n f i e  oi(t) = 2 s  dA UZ(N tan-l[exp(2n(Eo - A)/U)l 

(4.9b) 
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0.0 0.1 0.2 0.3 0.4 0.5 
"e 

1.25 

1 .oo 

"e 
Fiyre 6. Group velocities of the elemental excitations as a function of n, for one electron per 
site (n = I) and several values of U. (A) The Fermi velocity of the charges, UF, is zero in 
the insulating phase and finite if the system is a metal. V F  diverges when the Mott transition is 
approached from the metallic phase (n: = 0.002645 for U = 1. n: = 0.08839 f i r  U = 2). (6) 
The group velocity of crystalline field excitations, uc( vanishes when ne -f 0 (empty excited- 
electron band). The velocity decreases with increasing U and vanishes for U + m (an arbitrarily 
small A depopulates the excited-electron band). The different behaviour for U = 0 at small no 
is a consequence of the metal-insulator transition. (C) Spin-wave velocity for excitations within 
the lower-lying electron band. The velocity increases with the number of electrons in the band 
(ns = 1 - n.). U:? is always finite since the electron band is always populated. U:? decreases 
with increasing U and vanishes as U -, m. (D) Spin-wave velocity for excitations within the 
excited-electron band. The velocity increases with the number of elenmns in  the band, ne, and 
vanishes when n, = 0. U:? decreases with increasing U and vanishes as U - m. 

AE:?(&) are symmetric functions of CO, which vanish as CO + fco and have their 
maximum at CO = 0. The ranges of the momenta of the spin waves depend on the band 
fillings and are given by the intervals [O, x@n, + nr)] for 1 = 1 and [O, xne] for 1 = 3. In 
particular, since the I = 3 band refers to the spin waves in the excited-electron band, the 
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Figure 6. (Continued) 

excitation energy and the momentum only depend on q(*) and U*. The spin-wave dispersions 
are shown in figures 5(C) 2nd 5(D) for U = 2.5, n = 1 and the same values of n, as before. 
In case (a) the excited band is empty, so that there is no dispersion for l = 3. The maximum 
height of the dispersion decreases monotonically with ne. 

The slope at p = 0 is the spin-wave velocity, which can be obtained by expanding 
the energy and the momentum for 60 + --W. Both quantities vanish exponentially as 
CO + -m and after some algebra we obtain 

1 l-Q Q dk cos@) d k )  expI-2x sink/U] + fB dA qpn)(A) exp[-2irA/U] 
= _- 

U 

1 s_" dA q(*)(A) exp[-2rrA/U] 

U &.dA q ( A )  exp[-2xA/Ul 

l-QQ dk p(k)  ex~[-% s ink/U]  + fB dA ~ ( a )  exp[-2?rA/Ul 
14.10) 

~~~ ~ 

(3) = _ _  6 
U, 

The spin-wave velocities are displayed for n = 1 and several U values as a function of n, in 
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figures 6(C) and 6(D), repectively. The spin-wave velocity increases with the population of 
the corresponding electron band. Hence, U$$ monotonically increases with ne and vanishes 
as n. tends to zero (the excited-electron band is empty). On the other hand, U$ decreases 
with increasing ne (n, = 1 -ne  decreases) and remains finite since the lower-lying electron 
band is always populated. The velocities also decrease as a function of U and vanish 
identically for U t 00 since the spin waves are soft (the excitation energies are identically 
zero). In this limit an infinitesimal magnetic field completely polarizes the electrons. 

In the limit U --f 0 the excitation energies are (see the appendix) 

(0 elsewhere 

(4.11~) 

(4.116) 

and the momenta are obtained using the expressions for the densities given in the appendix 

The four velocities are then U!,!) = up = Zsin(Q) and U:? = u,f = 2 B .  

Finally we briefly address the limit B + 00, where the crystalline-field splitting is zero 
and the two bands are degenerate (SU(4) invariance). All rapidity bands are full in this 
limit and there are only 'hole' excitations. The potentials and the densities for the internal 
degrees of freedom are obtained by Fourier transformation (for A or c) 

I sin(xZ/4) 
fp(')(A) = 1: dk cos(k) c(k) -  

2U cosh[n(A - sin(k))/U] - cos(xl/4) 

Q 1 sin(rrIj4) L Q ~ ~  P(k)Fcosh[k(A - sin(k))/U] - cos(irZ/4) 
o"'(A) = 

(4.12a) 

(4.126) 

where I = 1,2,3. This reproduces results presented in [I31 

5. Susceptibility and low-temperature specific heat 

The low temperature specific heat is determined by the low-energy excitations. As a 
consequence of the Fermi statistics obeyed by all rapidities the low-T specific heat is 
proportional to the temperature. Only excitation branches of rapidities with a Fermi surface 
can contribute, that is, we have in general four conaibutions in the metallic case, but only 
three in the insulating situation where the charge degrees of freedom are frozen out. The 
temperature smears the Fermi surfaces of the rapidities and giving rise to a term with 
TZ dependence in the energy potentials of the rapidities and the free energy, unless the 
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spectrum has a gap. The y coefficient is then obtained via a Sommerfeld expansion of the 
free energy and of the energy potentials of the rapidities. After tedious algebra we obtain 
that the contribution of each band of rapidities is inversely proportional to the corresponding 
group velocity, 

Here the term involving uF is present in the metallic phase, but not in the insulating one. 
The zero-magnetic-field y as a function of ne for Ne = N,  and several U values is shown 
in figure 7(A). y increases monotonically with U and diverges as U + 00 since v,f and 
U:: tend to zero. In that limit an infinitesimal H (or A) aligns all spins (empties the 
excited-electron band) and the specific heat is not proportional to T .  On the other hand, y 
monotonically decreases with increasing n, and diverges as ne + 0 as a consequence of the 
van Hove singularity of the empty excited-electron band. For ne = 0.5 the electron bands 
are degenerate (A = 0) and we recover the result for the SU(-?)-invariant case. 

5.0 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 

ne 

(8) 1 - 

- 

0.0 0.1 0.2 0.3 0.4 0.5 
"e 

Figure 7. (A) Specific-heat cwfficient y and (B) magnetic susceptibility 2s as a function of n, 
for n = I and several U .  Both are decreasing functions of nL and increase with increasing U .  
Both quantities diverge as U -, CO. since the spin waves and the crystalline-field exciiaions 
became soti in this limit. For n, -+ 0 the quantities diverge as a consequcnm of the van Hove 
singularity of the empty excited electron band. 
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The susceptibility can be obtained as the linear response to a magnetic field. Since there 
are two electron bands that can be polarized, there are two contributions to the susceptibility, 
xs = x(') + x ( ~ ) .  If the field is small BI  and BI are large and we can expand equations 
(2.3b), (2.3d). (2.7b) and (2.7d) for large 151, i.e. for >> B ,  Q. The [ dependence of the 
driving terms is then exponential, proportional to exp(-Zalfl/U), for all four equations. 
Since the integration kernels of the integral equations are the same, the magnetizations of 
the two bands are both proportional to X. To establish the relation of B1 and B3 with H we 
write (2.7b) and (2.7d) as a sequence of Wiener-Hopf integral equations. After a standard 
but tedious calculation we obtain that 

where U:: is given by (4.10). This relation holds for all U and ne.  Since the spin-wave 
velocities vanish as U + 00, the susceptibility diverges in that limit. 

The susceptibility for n = 1 and several U is displayed in figure 7(B) as a function of 
It,. xs and y have a similar dependence on U and n,. xs increases with increasing U and 
decreases with increasing ne. It diverges as ne + 0 due to the van Hove singularity of 
the empty excited-electron band. The limit n, = 0.5 does, however, not correspond to the 
SU(4) situation, since within our model the Zeeman field does not couple to an effective 
spin 9 but to two spins 1. 

If the field is small but non-zero, logarithmic singularities appear in the susceptibility, 
caused by the interference between the two,Fermi surface poiilts of the spin-rapidity bands, 

x ~ ( H ) / x ~ ( o )  = [I + 1/Ln - In(Ln)/Ln* + ...I (5.3) 

where Ln = 21 ln(H)I [12, 241. 

6. Concluding remarks 

We have considered a system consisting of two one-dimensional tight-binding bands with a 
Hubbard-like interaction, which can be reduced to the SU(4) generalization of Lieb and Wu's 
[ 101 bet he^ ansatz solution of the traditional spin-; Hubbard model. We have presented a 
detailed study of the ground-state properties, the spectrum of elemental excitations, the low- 
T specific heat and the magnetic susceptibility. The motivation for the study is twofold: (a) 
to obtain a better understanding of the metal-insulator transition the system undergoes for 
exactly one electron per site and (b) some experimental evidence for the participation of the 
3d3 orbitals of Cu (besides the dominant 3d,r+ orbitals) in the properties of CuO-based 
high-temperature superconductors. 

The model is integrable by construction. The two bands have equal dispersion and 
are split by a crystalline field A. For A = 0 the system reduces to the SU(4)-invariant 
generalization of the Hubbard model, which for one electron per site has a Mott transition 
at U, = 2.981. On the other hand, for A larger than a critical value A, 

= -/",dk cos(k) GI(sink) c(k) 

the upper electron band is empty and the model is just the traditional spin-; Hubbard model, 
which for n = ~ l  is an insulator for all repulsive U (U, = 0). As the population of the 
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excited-electron band, ne, is increased from 0 to 0.5 the critical interaction strength that 
localizes the charges, U,, interpolates between the values 0 and 2.981. For small ne this 
dependence is non-analytic, ne sx U~’exp(-2x/UC). 

The metallic and insulating phases are best characterized by the Fermi velocity of the 
charges. For the metal UF is finite, while in the case of an insulator the Fermi velocity is 
zero. If n c 1 the system is always a metal. As the Mott transition is approached from the 
metallic phase (for n = l), the Fermi velocity diverges, as a consequence of the vanishing 
of the density of charges at the Fermi level, p(Q). This property has been used to determine 
the phase boundary between the metal and the insulator. For the insulator the range for the 
charge rapidities is the interval [x ,  371, while for the metal Q e ir. 

We studied the ground-state energy, the chemical potential and the crystalline-field 
splitting between’the electron bands for one electron per site as a function of ne and U. 
In these quantities the metal-insulator transition is only markedly seen as a discontinuity 
in the slope of p with ne. This is expected since p is the energ necessary to remove an 
electron from the system, which should have a different dependence in the metal than in 
the insulator. This discontinuity is much weaker in the slope of A. 

The spectrum of elemental excitations consists of four branches, one branch of charge 
excitations, one set of crystalline-field excitations and two branches of spin waves. The 
elemental excitations are soliton-like, i.e., the superposition principle holds and actual 
excitations can be built up as linear combinations of elemental ones. Hence, actual 
excitations then acquire a continuous energy spectrum for a given momentum. For n = 1 
we only have ‘hole’-like charge excitations. The most dramatic difference between the 
metal and the insulator is the Fermi velocity as discussed above. The crystalline field 
excitations have a Fermi surface (the excitation energy vanishes) with Fermi momentum 
p E p  = xn,, and hence the branch has ‘particle’- and ‘hole’-like excitations. The most 
important characteristics in this dispersion besides the Fermi momentum is the corresponding 
group velocity, u,r, which is considerably affected by the metal-insulator transition. The 
momentum range of the spin waves is also determined by the number of electrons in 
each of the bands. In the absence o$,a magnetic field, there are only ‘hole’-like spin-wave 
excitations. The spin-wave velocities of the two bands increase with the number of electrons 
occupying the respective band, and decrease with U. For U 3 00 the crystalline field and 
both spin-wave branches become soft, as a consequence of the excluded multiple occupancy 
of each site. 

The magnetic susceptibility and the linear-T coefficient of the specific heat, y .  are 
both determined by the group velocities of the branches of elemental excitations. Both are 
increasing functions of U and diverge as U -+ 03. They also diverge as n, + 0 as a 
consequence of the van Hove singularity of the empty excited electron band. 
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Appendix. The U = 0 solution 

In the U -+ 0 limit and zero magnetic field the solution of (2.3) for the rapidity distribution 
densities is 
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P(k) = l/rr if sin-'(B) e Ikl < Q 

elsewhere 

I31 

(A. 1 ) 

(A.2) 
I/[R,KZJ if I A I  < B 

{ O  elsewhere 
uz(N = 

~. . 
~ I w  = 4 [ ~ 2 ( 5 )  + p(sin-'(c)) / -1 (-4.3) 

Ud5) = -:UZ20). (-4.4) 

For a band occupation of exactly one electron per site, n = NJN, = 1, the integration 
limits B and Q are not independent, but related via 

(-4.5) Q + sin-'@) = n/2 . 
The populations of the bands are 

and the energy is given by 

0 4 
E / N a  = IQ& [-2cos(k)l p ( k )  = -;[B + sin(Q)l. (A.7) 

The energy potentials are obtained in a similar way (zero magnetic field) 

if B e Isin(k)l < sin(Q) 
-Scos(k) - 4p + 2A if I sin(k)l < B 

(A.@ 
-2cos(k) - p elsewhere 

I r - Z p - 4 -  i f I A I < B  (-4.9) 
= 

A - p - Z J m  if B < IAl < sin(Q) 
elsewhere 

-[~("(~)+p(sin-'(5))] if 151 < B 
(A.10) 

if B c 151 < sin(Q) 

elsewhere 

if It1 < B (A.11) 
elsewhere. 

The chemical potential, f i ,  and the band splitting, A, are determined from <(-+e) = 0 
and v ( ~ ) ( ~ B )  = 0 (n = 1) 

p = -2cos(Q) A = 2sin(Q) -2cos(Q). (A.12) 
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